

Theoretical evaluation of a Sawtooth PAT planning algorithm across multiple treatment sites

Sam Burford-Eyre

Conflicts of Interest

> No disclosures

Proton Arc Therapy (PAT) Introduction

Tami Freeman. "Proton arc therapy: the next evolution in proton delivery?." *Physics world (Oct 2019)*

Proton Arc Therapy (PAT) Introduction

Outstanding questions:

- 1. Energy selection algorithm
- 2. Robustness to setup uncertainties
- 3. Suitability for different treatment sites
- Biological effectiveness 4.
- Delivery time requirements on current PBT systems 5.
- QA devices 6.
- 7. Interlock / safety procedures

Q

The Christie

MANCHESTER

The University of Manchester

Precise

Group

Proton Arc Therapy (PAT) Introduction

Outstanding questions:

- 1. Energy selection algorithm
- 2. Robustness to setup uncertainties
- 3. Suitability for different treatment sites
- 4. Biological effectiveness
- 5. Delivery time requirements on current PBT systems
- 6. QA devices
- 7. Interlock / safety procedures

Methods

Sawtooth PAT planning algorithm developed in matRad [1]:

- Beam model from experimental measurements in Christie Proton Research Room
- Step and shoot PAT with 1 energy per control point
- Robust optimisation using clinical dose objectives
- Field specific targets
- Single, dual and partial arc delivery regimes
- Linear Energy Transfer (LET) analysis

[1] Wieser, Hans-Peter, et al. "Development of the open-source dose calculation and optimization toolkit matRad." *Medical physics* 44.6 (2017): 2556-2568.

Methods

Applied Sawtooth PAT planning algorithm to multiple treatment sites under single and dual arc delivery regimes:

- Abdominal CT phantom [2]
- 2 Brain (Ependymoma)
- 2 H&N (Oropharyngeal)
- 2 BoS (Chondrosarcoma)

IMPT plan generated for each case

Fields / 'teeth' in PAT plan incrementally increased until either clinical standard achieved or no further improvement to plan quality

Dose and LET distribution comparison (IMPT vs PAT)

[2] Kalendralis, Petros, et al. "Multicenter CT phantoms public dataset for radiomics reproducibility tests." *Medical physics* 46.3 (2019): 1512-1518.

Results: Abdominal Phantom Dose

RBExD [Gy(RBE)]

[2] Kalendralis, Petros, et al. "Multicenter CT phantoms public dataset for radiomics reproducibility tests." *Medical physics* 46.3 (2019): 1512-1518.

Results: Abdominal Phantom LET

[2] Kalendralis, Petros, et al. "Multicenter CT phantoms public dataset for radiomics reproducibility tests." Medical physics 46.3 (2019): 1512-1518.

PPRIG Workshop 2023

Results: Abdominal Phantom

➤ 4 teeth required to meet clinical objectives

- > PAT improved target dose homogeneity relative to IMPT
- PAT reduces target LET and integral dose to patient

[2] Kalendralis, Petros, et al. "Multicenter CT phantoms public dataset for radiomics reproducibility tests." *Medical physics* 46.3 (2019): 1512-1518.

PPRIG Workshop 2023

ROI	Metric	IMPT (3)	Single Arc (4)	Dual Arc (4)	
CTV	$\begin{array}{c} {\rm V}_{95\%} \; / \; \% V_{\rm CTV} \\ {\rm V}_{105\%} \; / \; \% V_{\rm CTV} \\ \Delta D \; / \; {\rm Gy} \end{array}$	97.57 2.71 3.06	98.89 1 2.15 4 3.01 4	98.82 1 .53 2 .83 •	
Patient	ID / J	0.461	0.451	0.436 🔶	

Results: Brain 1

Table 3. Relevant worst-case clinical dose tolerances and custom metrics under

each delivery technique for the ependymoma E1 case. Violated tolerances are

shown in bold. Bracketed number shows the number of fields/teeth within each

0.178

сти сти 60 Nolume Volume [%] 2.5 RBE_{1.1} x Dose [Gy] LET [keV/µm] Brainstem Brainstem Volume [%] Volume [%] RBE₁₁ x Dose [Gy] LET [keV/µm]

	final plan. Abbreviations	: $ID = Integra$	l dose.	,
ROI	Clinical goal	IMPT (3)	Single Arc (6)	Dual Arc (6)
CTV	$\begin{array}{l} V_{95\%} > 98\% \ V_{\rm CTV} \\ V_{110\%} < 10\% \ V_{\rm CTV} \\ \Delta D \ / \ {\rm Gy} \end{array}$	99.22 0.00 2.96	97.84 ↓ 0.09 4.50 ↑	96.03 ↓ 0.09 ↓ 4.71 ↑
Brainstem	$\begin{array}{l} D_{1\%} < 59.4 Gy \\ D_{10\%} < 58 Gy \\ D_{50\%} < 56 Gy \end{array}$	58.67 56.98 43.30	59.58 57.28 43.06	60.15 ↑ 57.43 ■ 40.64 ↓
Spinalcord	$\rm D_{2\%} \leq 54 Gy$	45.06	42.54 🖊	44.86
Cochlea	$\rm D_{mean} < 30 Gy$	$16.70 \\ 4.79$	16.37 4.13	16.03 4.30

0.182

0.178

6 teeth required to meet clinical objectives

ID / J

Patient

- Target dose homogeneity and LET reduced by PAT
- > PAT fails clinical high dose Brainstem tolerances

Results: BoS 1 Dose

Table 4. Relevant worst-case clinical dose tolerances and custom metrics under each delivery technique for the chondrosarcoma B1 case. Violated tolerances are shown in bold. Bracketed number shows the number of fields/teeth within each final plan. Abbreviations: $ON = Optic Nerve, OC = Optic Chiasm, D_{pres} = prescribed dose, ID = Integral dose, L = Left, R = Right.$

ROI	Clinical goal	IMPT (4)	Single Arc (7)	Dual Arc (10)
CTV1	$\begin{array}{l} D_{98\%} > 90\% \ D_{pres} \\ D_{95\%} > 95\% \ D_{pres} \\ D_{2\%} < 110\% \ D_{pres} \\ \Delta D \ / \ Gy \end{array}$	79.41 84.46 109.48 15.24	79.11 83.67 111.40 17.50	79.74 83.88 110.99 16.49
CTV2	$\begin{array}{l} {\rm D_{98\%} > 90\% \ D_{pres}} \\ {\rm D_{95\%} > 95\% \ D_{pres}} \\ \Delta D \ / \ {\rm Gy} \end{array}$	86.66 95.66 19.28	92.09 97.44 20.05	91.90 97.94 17.99
OCa	$\begin{array}{l} D_{2\%} < 60 Gy \\ D_{mean} < 54 Gy \end{array}$	$58.25 \\ 48.94$	59.11 † 51.11 †	58.49 50.63
ON L ^a	$\begin{array}{l} D_{2\%} < 60 Gy \\ D_{mean} < 54 Gy \end{array}$	$59.56 \\ 32.93$	$56.11 \clubsuit \\ 28.33 \clubsuit $	56.61 + 27.01 +
ON R ^a	$\begin{array}{l} D_{2\%} < 60 Gy \\ D_{mean} < 54 Gy \end{array}$	$56.17 \\ 31.36$	55.29 27.15	54.81 \bigcirc 26.02 \bigcirc
Brainstem	$D_{2\%} < 63 Gy$	60.77	61.57 🔶	61.00
Spinalcord	$D_{\rm max} < 67 {\rm Gy}$	40.43	40.49	37.04 📕
$\begin{array}{c} Cochlea \ L^b \\ Cochlea \ R^b \end{array}$	$\begin{array}{l} D_{\rm mean} < 45 {\rm Gy} \\ D_{\rm mean} < 45 {\rm Gy} \end{array}$	35.31 28.42	31.82 23.66	32.22 25.40
Patient	ID / J	1.83	1.67 🕂	1.48 🖊

^a If unilateral blindness accepted, failure of one ON permitted if dose to other ON and OC significantly lower than threshold.
^b Failure of one Cochlea permitted.

- 7 and 10 teeth required for single and dual arc PAT
- PAT provides increases OAR sparing at expense of further target dose reduction

Results: BoS 1 LET

> PAT slightly increases LET to most OARs and targets

10/11/2023

Results: H&N 1 Dose

Table 5. Relevant worst-case clinical dose tolerances and custom metrics under each delivery technique for the oropharyngeal O1 case. Bracketed number shows the number of fields/teeth within each final plan. Abbreviations: SMG = Submandibular Gland, Ip = Ipsilateral, Con = Contralateral, ID = Integral dose, ALAP = As low as possible, D_{pres} = prescribed dose.

ROI	Clinical goal	IMPT (5)	Single Arc (8)	B) Dual Arc (6)	
	$D_{99\%} > 90\% D_{pres}$	95.40	92.64	91.55 🕂	
	$D_{95\%} > 95\% D_{pres}$	97.18	95.36	95.42	
CTV1	$D_{5\%} \le 105\% D_{pres}$	102.31	104.21 📥	104.40 🔶	
	$D_{2\%} \leq 107\% D_{pres}$	103.09	105.63	106.40	
	ΔD / Gy	3.50	5.79	5.54	
	$D_{99\%} > 90\% D_{pres}$	92.64	91.04 🕂	91.68 🚽	
CTV9	$D_{95\%} > 95\% D_{pres}$	96.18	95.88	96.36	
C1V2	D _{5%} ALAP / Gy	69.82	70.55 🕇	70.48	
	$D_{2\%}$ ALAP / Gy	70.76	71.96 🕇	72.38 🕇	
Density and any	$D_{1cc} < 54Gy$	6.97	2.73 🖊	7.57	
Brainstein	$D_{0.1cc} < 55 \mathrm{Gy}$	23.56	25.72	30.81 🔶	
Chinalaand	$D_{1cc} < 48Gy$	3.75	2.00 🔸	2.36 📕	
Spinalcord	$D_{0.1cc} < 46 Gy$	29.30	28.37	30.81 📕	
Parotid (Ip)	D _{mean} / Gy ALAP	28.61	32.09	31.53 🔶	
Parotid (Con)	$D_{\rm mean} < 20 {\rm Gy}$	10.42	11.94 🕇	10.36	
SMG (Ip)	D _{mean} / Gy ALAP	68.16	69.03	68.64	
SMG (Con)	$\rm D_{mean} < 20 Gy$	32.05	30.12	32.67	
Patient	ID / J	23.13	22.84	23.34	

> 8 and 6 teeth required for single and dual arc PAT

PAT decreases target dose homogeneity and OAR sparing but remains of clinical standard

20

30

RBE_{1.1} x Dose [Gy]

40

50

CTV2

Results: H&N 1 LET

LET differences between PAT and IMPT are OAR dependent

Future Work

Simulate and deliver PAT plan in Christie PBT Research Room

Patient

ArcCheck

- > Applied to treatment sites: Abdominal phantom, Brain (x2), H&N (x2) and BoS (x2)
- > All PAT plans met clinical dose objectives in the nominal scenario
- Robustness of PAT relative to IMPT highly dependent on treatment site, favouring simple symmetrical targets
- > PAT consistently requires more teeth (fields) than IMPT
- Future work: Simulate and deliver PAT plan in Christie PBT Research Room.

Acknowledgements

Supervisors:

Rob Appleby Mike Merchant Adam Aitkenhead Ranald Mackay Peter Sitch **RR Engineers:** Syed Mehdi Richard Ling Steve Fearnehough Subin Padmanabhan

PRECISE Contributions:

Sam Manger Sam Ingram John William – Warmenhoven Nick Henthorn Yunzhou Xia

Other PRECISE members:

Josephine Jones **Charlie Heaven** Hannah Wanstall Abigail Hemming Jack Aylward Joseph Hallett **Becky Habgood** Emily Barrett Ally McGrath Emma Biglin Matthew Clarke

Elham Santina George Banister Mike Taylor Karen Kirkby Chris Smith Norman Kirkby **Rebecca** Parker Helena Kondryn Jennifer Antrobus Mykola Korabel Amy Chadwick Matthew Lowe

Thank You

Contact: samuel.burford-eyre@manchester.ac.uk

Methods: Planning Parameters

Table 1. Details of the anatomical location, target volume, prescribed dose in a given number of fractions (#), irradiation angles and range shifter thickness used for each dataset. Partial arcs used for PAT delivery to both BoS datasets. Bracketed tag used as dataset reference. Abbreviations: RS = Range Shifter, $D_{pres} = prescribed dose$.

Treatment site	Target Volume (cm^3)	Prescribed Dose (Gy)	#	IMPT (°)	PAT (°)	RS (cm)
Abdominal ^a (A1)	22.52	60.00	30	0,45,90	$0 \rightarrow 90$	3
Brain (E1)	18.15	59.40	33	120,180,240	$90 \rightarrow 270$	None
Brain (E2)	67.30	59.40	33	15,90,330	$330 \rightarrow 90$	5
BoS (B1)	9.23 (CTV1) 32.03 (CTV2)	73.80 (CTV1) 59.45 (CTV2)	41	55,100,260,305	$\begin{array}{c} 225 \rightarrow 315 \\ 45 \rightarrow 135 \end{array}$	None
BoS $(B2)$	99.49 (CTV1) 144.99 (CTV2)	73.80 (CTV1) 59.45 (CTV2)	41	80,130,230,275	$\begin{array}{c} 225 \rightarrow 315 \\ 45 \rightarrow 135 \end{array}$	2
H&N (O1)	121.34 (CTV1) 191.27 (CTV2)	$\begin{array}{c} 70.00 \ ({\rm CTV1}) \\ 56.00 \ ({\rm CTV2}) \end{array}$	33	0,60,90,270,315	$270 \rightarrow 90$	5
H&N (O2)	98.73 (CTV1) 177.49 (CTV2)	$\begin{array}{c} 70.00 \ ({\rm CTV1}) \\ 56.00 \ ({\rm CTV2}) \end{array}$	33	$0,\!45,\!125,\!270,\!325$	$270 \rightarrow 90$	3

^a CT phantom.

PAT Energy Layer distribution: Abdominal Phantom

PPRIG Workshop 2023

PAT Energy Layer distribution: Brain 1

PPRIG Workshop 2023

PAT Energy Layer distribution: H&N 1

PAT Energy Layer distribution: BoS 1

Limitations

- Algorithm constrains upward energy switches as Christie upward ELST = 30s
- Including a 'coverage' based metric during EL selection may improve PAT plan quality
- Method of spot removal may cause low dose streaks within entrance region
- PAT plans optimised under same (highly specific) objectives as IMPT

